If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10a^2+10a=0
a = 10; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·10·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*10}=\frac{-20}{20} =-1 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*10}=\frac{0}{20} =0 $
| 180=-3(-4-7x) | | 3n*6-2n=2(n+3) | | 4/x+1=-6 | | 92/100=x/12 | | x+0.5(5)=0.8(x+5) | | p-12=-64 | | 2x/1.4=120 | | -312=8(6x-3) | | 1/x+3=3/29 | | 2.x-7=13 | | 1/4x=36 | | 14x-14=3x-3 | | 4(r+13)=84 | | 17=1/2t+3 | | 1/2+7w/10=13/20 | | 9^3x+6=(1/3)^8-x | | 225=-16x^2+120x | | 5=b+7/5 | | d/7+44=52 | | 7(2x−2)=3(x−4)+9 | | 10=17x2x | | 24=d/5=21 | | 2a–45°=6a–35° | | -8x-4+3x=7x+x+14 | | v/9+49=51 | | (2x-x)40=200 | | 4(2x–1)=-6(x+3) | | 16x-11=17x-17 | | (2x-x)30=200 | | 2m−2=6 | | 6=2(x+8-5x | | 51=n/7+47 |